Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10118, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698069

RESUMEN

Under grid voltage sags, over current protection and exploiting the maximum capacity of the inverter are the two main goals of grid-connected PV inverters. To facilitate low-voltage ride-through (LVRT), it is imperative to ensure that inverter currents are sinusoidal and remain within permissible limits throughout the inverter operation. An improved LVRT control strategy for a two-stage three-phase grid-connected PV system is presented here to address these challenges. To provide over current limitation as well as to ensure maximum exploitation of the inverter capacity, a control strategy is proposed, and performance the strategy is evaluated based on the three generation scenarios on a 2-kW grid connected PV system. An active power curtailment (APC) loop is activated only in high power generation scenario to limit the current's amplitude below the inverter's rated current. The superior performance of the proposed strategy is established by comparison with two recent LVRT control strategies. The proposed method not only injects necessary active and reactive power but also minimizes overcurrent with increased exploitation of the inverter's capacity under unbalanced grid voltage sag.

2.
Tomography ; 9(6): 2158-2189, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38133073

RESUMEN

Computed tomography (CT) is used in a wide range of medical imaging diagnoses. However, the reconstruction of CT images from raw projection data is inherently complex and is subject to artifacts and noise, which compromises image quality and accuracy. In order to address these challenges, deep learning developments have the potential to improve the reconstruction of computed tomography images. In this regard, our research aim is to determine the techniques that are used for 3D deep learning in CT reconstruction and to identify the training and validation datasets that are accessible. This research was performed on five databases. After a careful assessment of each record based on the objective and scope of the study, we selected 60 research articles for this review. This systematic literature review revealed that convolutional neural networks (CNNs), 3D convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) were the most suitable deep learning algorithms for CT reconstruction. Additionally, two major datasets appropriate for training and developing deep learning systems were identified: 2016 NIH-AAPM-Mayo and MSCT. These datasets are important resources for the creation and assessment of CT reconstruction models. According to the results, 3D deep learning may increase the effectiveness of CT image reconstruction, boost image quality, and lower radiation exposure. By using these deep learning approaches, CT image reconstruction may be made more precise and effective, improving patient outcomes, diagnostic accuracy, and healthcare system productivity.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Algoritmos
3.
Biomimetics (Basel) ; 8(7)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999166

RESUMEN

This study introduces ETLBOCBL-CNN, an automated approach for optimizing convolutional neural network (CNN) architectures to address classification tasks of varying complexities. ETLBOCBL-CNN employs an effective encoding scheme to optimize network and learning hyperparameters, enabling the discovery of innovative CNN structures. To enhance the search process, it incorporates a competency-based learning concept inspired by mixed-ability classrooms during the teacher phase. This categorizes learners into competency-based groups, guiding each learner's search process by utilizing the knowledge of the predominant peers, the teacher solution, and the population mean. This approach fosters diversity within the population and promotes the discovery of innovative network architectures. During the learner phase, ETLBOCBL-CNN integrates a stochastic peer interaction scheme that encourages collaborative learning among learners, enhancing the optimization of CNN architectures. To preserve valuable network information and promote long-term population quality improvement, ETLBOCBL-CNN introduces a tri-criterion selection scheme that considers fitness, diversity, and learners' improvement rates. The performance of ETLBOCBL-CNN is evaluated on nine different image datasets and compared to state-of-the-art methods. Notably, ELTLBOCBL-CNN achieves outstanding accuracies on various datasets, including MNIST (99.72%), MNIST-RD (96.67%), MNIST-RB (98.28%), MNIST-BI (97.22%), MNST-RD + BI (83.45%), Rectangles (99.99%), Rectangles-I (97.41%), Convex (98.35%), and MNIST-Fashion (93.70%). These results highlight the remarkable classification accuracy of ETLBOCBL-CNN, underscoring its potential for advancing smart device infrastructure development.

4.
Environ Sci Pollut Res Int ; 30(45): 101223-101233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648923

RESUMEN

In light of the adverse environmental impact of the R134a refrigerant, replacing it with a more environmentally friendly refrigerant has become imperative than ever. This study presents an experimental investigation into the utilization of R152a and R134a refrigerants in a vapor compression refrigeration system employing a variable displacement oil-free linear compressor. The potential for the replacement of R134a with R152a was examined based on energy, environmental, and economic performance analyses. The outcomes indicated that R152a exhibited a higher coefficient of performance (COP) in comparison to R134a under identical operating conditions. Specifically, when the pressure ratio was 2.0 and the piston stroke was 11 mm, R152a's COP was 13.0% higher than R134a. It was also discovered that reducing the operating stroke and increasing the pressure ratio could effectively lower CO2 emissions and total costs. Under the 2.0 pressure ratio and 9-mm piston stroke, R134a produced 1082.4 kg more CO2 emissions than R152a, representing a 209% increase. In addition, the R152a and R134a total cost was reduced by 8.3% with the 2.5 pressure ratio and 11-mm piston stroke. Notably, the results of the current study demonstrated that R152a outperformed R134a in energy consumption, environmental friendliness, and economy in oil-free linear compressor refrigeration systems. R152a used less electric power, generated fewer CO2 emissions, and naturally reduced predicted running costs in order to maintain the same COP.

5.
Sci Rep ; 13(1): 11134, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429876

RESUMEN

One of the greatest challenges for widespread utilization of solar energy is the low conversion efficiency, motivating the needs of developing more innovative approaches to improve the design of solar energy conversion equipment. Solar cell is the fundamental component of a photovoltaic (PV) system. Solar cell's precise modelling and estimation of its parameters are of paramount importance for the simulation, design, and control of PV system to achieve optimal performances. It is nontrivial to estimate the unknown parameters of solar cell due to the nonlinearity and multimodality of search space. Conventional optimization methods tend to suffer from numerous drawbacks such as a tendency to be trapped in some local optima when solving this challenging problem. This paper aims to investigate the performance of eight state-of-the-art metaheuristic algorithms (MAs) to solve the solar cell parameter estimation problem on four case studies constituting of four different types of PV systems: R.T.C. France solar cell, LSM20 PV module, Solarex MSX-60 PV module, and SS2018P PV module. These four cell/modules are built using different technologies. The simulation results clearly indicate that the Coot-Bird Optimization technique obtains the minimum RMSE values of 1.0264E-05 and 1.8694E-03 for the R.T.C. France solar cell and the LSM20 PV module, respectively, while the wild horse optimizer outperforms in the case of the Solarex MSX-60 and SS2018 PV modules and gives the lowest value of RMSE as 2.6961E-03 and 4.7571E-05, respectively. Furthermore, the performances of all eight selected MAs are assessed by employing two non-parametric tests known as Friedman ranking and Wilcoxon rank-sum test. A full description is also provided, enabling the readers to understand the capability of each selected MA in improving the solar cell modelling that can enhance its energy conversion efficiency. Referring to the results obtained, some thoughts and suggestions for further improvements are provided in the conclusion section.

6.
Diagnostics (Basel) ; 12(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36428952

RESUMEN

Human skin diseases have become increasingly prevalent in recent decades, with millions of individuals in developed countries experiencing monkeypox. Such conditions often carry less obvious but no less devastating risks, including increased vulnerability to monkeypox, cancer, and low self-esteem. Due to the low visual resolution of monkeypox disease images, medical specialists with high-level tools are typically required for a proper diagnosis. The manual diagnosis of monkeypox disease is subjective, time-consuming, and labor-intensive. Therefore, it is necessary to create a computer-aided approach for the automated diagnosis of monkeypox disease. Most research articles on monkeypox disease relied on convolutional neural networks (CNNs) and using classical loss functions, allowing them to pick up discriminative elements in monkeypox images. To enhance this, a novel framework using Al-Biruni Earth radius (BER) optimization-based stochastic fractal search (BERSFS) is proposed to fine-tune the deep CNN layers for classifying monkeypox disease from images. As a first step in the proposed approach, we use deep CNN-based models to learn the embedding of input images in Euclidean space. In the second step, we use an optimized classification model based on the triplet loss function to calculate the distance between pairs of images in Euclidean space and learn features that may be used to distinguish between different cases, including monkeypox cases. The proposed approach uses images of human skin diseases obtained from an African hospital. The experimental results of the study demonstrate the proposed framework's efficacy, as it outperforms numerous examples of prior research on skin disease problems. On the other hand, statistical experiments with Wilcoxon and analysis of variance (ANOVA) tests are conducted to evaluate the proposed approach in terms of effectiveness and stability. The recorded results confirm the superiority of the proposed method when compared with other optimization algorithms and machine learning models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...